Some Identities on the q - Bernoulli Numbers and Polynomials with Weight 0

نویسنده

  • Y. H. Kim
چکیده

and Applied Analysis 3 where n, k ∈ Z see 1, 9, 10 . For n, k ∈ Z , the p-adic Bernstein polynomials of degree n are defined by Bk,n x k x k 1 − x n−k for x ∈ Zp, see 1, 10, 11 . In this paper, we consider Bernstein polynomials to express the p-adic q-integral on Zp and investigate some interesting identities of Bernstein polynomials associated with the q-Bernoulli numbers and polynomials with weight 0 by using the expression of p-adic qintegral on Zp of these polynomials. 2. q-Bernoulli Numbers with Weight 0 and Bernstein Polynomials In the special case, α 0, the q-Bernoulli numbers with weight 0 will be denoted by β̃ 0 n,q β̃n,q. From 1.4 , 1.5 , and 1.6 , we note that ∞ ∑ n 0 β̃n,q t n! ∞ ∑ n 0 ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

A Note on the Modified q - Bernoulli Numbers and Polynomials with Weight α

and Applied Analysis 3 we derive some interesting identities and relations on the modified q-Bernoulli numbers and polynomials. 2. The Modified q-Bernoulli Numbers and Polynomials with Weight α In this section, we assume α ∈ Q. Now, we define the modified q-Bernoulli numbers with weight α B̃ α n,q as follows:

متن کامل

Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

متن کامل

On the weighted degenerate Carlitz q-Bernoulli polynomials and numbers

In this paper, by using the p-adic q-integral on Zp which was defined by Kim, we define the weighted Carlitz q-Bernoulli polynomials and investigate some identities of these polynomials. In particular, we define the weighted degenerate Carlitz’s q-Bernoulli polynomials and numbers and give some interesting properties that are associated with these numbers and polynomials. AMS subject classifica...

متن کامل

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

Abstract. The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss’s multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014